Monday 19 May 2008

Weekly BioNews 12 - 19 May 2008

- Spotlight On A Key Player In The Dance Of Chromosomes

ScienceDaily (May 16, 2008)

Cell division is essential to life, but the mechanism by which emerging daughter cells organize and divvy up their genetic endowments is little understood. In a new study, researchers at the University of Illinois and Columbia University report on how a key motor protein orchestrates chromosome movements at a critical stage of cell division.

Within the complex world of the cell, motor proteins function as a kind of postal service. These proteins carry cargo from one location to another in the cell, a job that requires precision, in both the location and the timing of delivery. They are fueled by a small molecule, adenosine tri-phosphate (ATP).

Some motor proteins are essential to mitosis – the process by which cell division occurs in higher organisms. During cell division it is important for chromosomes to line up at the middle of the parent cell allowing for their separation between the two daughter cells.

Motor proteins play a key role in the movement of chromosomes to and from the poles of the cell. Should any of these processes lose coordination, it could result in disease or cell death....

- First Transgenic Monkey Model Of Huntington's Disease Developed

ScienceDaily (May 19, 2008)

Scientists have developed the first genetically altered monkey model that replicates some symptoms observed in patients with Huntington's disease, according to a new study funded by the National Institutes of Health. Researchers are now able to better understand this complex, devastating and incurable genetic disorder affecting the brain. This advance, reported in the May 18 advance of online publication edition of Nature, could lead to major breakthroughs in the effort to develop new treatments for a range of neurological diseases.

Huntington's is an inherited disease caused by a defective gene that triggers certain nerve cells in the brain to die. Symptoms may include uncontrolled movements, mood swings, cognitive decline, balance problems, and eventually losing the ability to walk, talk or swallow. It affects five to 10 people in every 100,000. There is no known treatment to halt progression of the disease, only medications to relieve symptoms. Death typically occurs 15 to 20 years after onset.
This study marks the first time that researchers have developed a rhesus macaque model of a specific human disease using transgenic technologies, a marked improvement over mouse models. Transgenic animals are created using a recombinant DNA method to modify a genome...

- Deep Sea Methane Scavengers Captured

ScienceDaily (May 16, 2008)

Scientists of the Helmholtz Centre for Environmental Research (UFZ) in Leipzig and the California Institute of Technology (Caltech) in Pasadena succeeded in capturing syntrophic (means "feeding together") microorganisms that are known to dramatically reduce the oceanic emission of methane into the atmosphere. These microorganisms that oxidize methane anaerobically are an important component of the global carbon cycle and a major sink for methane on Earth. Methane - a more than 20 times stronger greenhouse gas than carbon dioxide - constantly seeps out large methane hydrate reservoirs in the ocean floors, but 80 percent of it are immediately consumed by these microorganisms.

The importance of the anaerobic oxidation of methane for the Earth’s climate is known since 1999 and various international research groups work on isolating the responsible microorganisms, so far with little success. Pernthaler and co-workers developed a new molecular technique to selectively separate these microorganisms from their natural complex community, and subsequently sequenced their genome. The findings were exciting: Besides identifying all genes responsible for the anaerobic oxidation of methane, new bacterial partners of this syntrophic association were discovered and the ability to fix N2 could be demonstrated....

- DNA fingerprinting simplified

May 13, 2008 11:52 PM

Agarose gel electrophoresis" Most teenagers wouldn’t have a clue what this scientific term means, but middle school student Andrew Trigiano knows the protocol inside and out. When Andrew was 12, his father Robert Trigiano, a professor at the University of Tennessee, was looking for an interesting science project for his son. Setting out to compare differences in popular brands of Easter egg dyes, Trigiano’s project soon grew into a full-blown scientific study and set of replicable classroom experiments.

One of the most frequently used tools in biochemistry and biotechnology, agarose gel electrophoresis is a common forensic technique often used in genetic or DNA fingerprinting. The procedure is achieved by moving negatively charged nucleic acid molecules through a gelatinous substance known as agarose by using an electric field.

Andrew, in collaboration with his father and other researchers, completed the study, which is published in the January 2008 issue the American Society of Horticultural Science’s journal HortTechnology. The youngest author ever to publish in an ASHS journal, Andrew was only 12 when he began the research project and 14 when the study was published.

- MIT crafts bacteria-resistant films

May 15, 2008 09:28 PM

Having found that whether bacteria stick to surfaces depends partly on how stiff those surfaces are, MIT engineers have created ultrathin films made of polymers that could be applied to medical devices and other surfaces to control microbe accumulation.

The inexpensive, easy-to-produce films could provide a valuable layer of protection for the health care industry by helping to reduce the spread of hospital-acquired infections, which take the lives of 100,000 people and cost the United States an estimated $4.5 billion annually.

The researchers, who describe their work in an upcoming issue of the journal Biomacromolecules, found they could control the extent of bacterial adhesion to surfaces by manipulating the mechanical stiffness of polymer films called polyelectrolyte multilayers. Thus, the films could be designed to prevent accumulation of hazardous bacteria or promote growth of desirable bacteria.

“All other factors being equal, mechanical stiffness of material surfaces increases bacterial adhesion,” said Krystyn Van Vliet, the Thomas Lord Assistant Professor of Materials Science and Engineering and the paper's anchor author....

- Biosensor for measuring stress in cells

May 17, 2008 03:11 PM

Cancer, nervous system disorders such as Parkinson’s disease, cardiovascular disorders and old age have one thing in common: Both in afflicted tissue and in aging cells, scientists have observed oxidative changes in important biomolecules. These are caused by reactive oxygen molecules, including the notorious “free radicals” that are formed as a by-product of cellular respiration and attack cellular proteins, nucleic and fatty acids.

Today, reactive oxygen molecules are no longer regarded by and large as culprits, since it has turned out that they are also involved in regulating major life processes such as growth and cell death. The right balance between oxidation and the reverse reaction, reduction, makes the difference between health and disease. “Oxidative stress” arises when this balance shifts towards oxidation-promoting processes.

So far, it has hardly been possible for scientists to measure the level of oxidation and, thus, the stress status of living cells. This will now be feasible thanks to a highly sensitive biomarker presented in the journal Nature Methods by Dr. Tobias Dick and co-workers of the German Cancer Research Center, jointly with colleagues from the University of Heidelberg.

No comments:

Opinions – Suggestions - Remarks